
J. FZuidMech. (1993), VOZ. 249, p p .  241-259 

Copyright 0 1993 Cambridge University Press 

24 1 
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Wave-drift damping results from low-frequency oscillatory motions of a floating 
body, in the presence of an incident wave field. Previous works have analysed this 
effect in a quasi-steady manner, based on the rate of change of the added resistance 
in waves, with respect to a small steady forward velocity. In  this paper the wave- 
drift damping coefficient is derived more directly, from a perturbation analysis where 
the low-frequency body oscillations are superposed on the diffraction field. Unlike 
the case of body oscillations in calm water, where the damping due to wave radiation 
is asymptotically small for low frequencies, the superposition of oscillatory motions 
on the diffraction field results in an order-one damping coefficient. All three degrees 
of freedom are considered in the horizontal plane. The resulting matrix of damping 
coefficients is derived from pressure integration on the body, and transformed in 
special cases to a far-field control surface. 

1. Introduction 
The linear exciting force exerted by water waves on a floating body is proportional 

to the wave amplitude A ,  and acts with the same frequency w .  Quadratic nonlinear 
interactions a t  second order result in a steady ‘mean drift force’ of order A 2  which 
is independent of time. More generally, in a realistic spectrum of ocean waves, slowly 
varying second-order forces occur a t  the differences u = Iwi - w,I between the 
frequencies (wi ,  w j )  of each pair of spectral components. (Second-order interactions 
also cause high-frequency forces which are important for certain types of offshore 
platforms, cf. Lee et al. 1991, but these are quite different in their character, and are 
not considered in the present work.) 

Vessels moored in deep water can experience resonant low-frequency motions in 
the horizontal plane, due to excitation from the slowly varying second-order wave 
forces. Important practical examples are moored ships, where the mooring system 
has a relatively small linear restoring force, and tension-leg platforms which are 
similar dynamically to an inverted pendulum with the buoyancy force directed 
upwards. The resonant response of these vessels is limited only by the relevant 
hydrodynamic damping mechanisms. 

A t  low frequencies the conventional linear damping of body motions due to wave 
radiation is negligible. For example, the horizontal exciting force acting on a fixed 
three-dimensional body in long wavelengths is proportional to the pressure gradient 
of the incident waves, or O ( a 2 )  for waves of unit amplitude and low frequency u. It 
follows from the Haskind relations (cf. Newman 1977) that the horizontal damping 
coefficients are O(a’). On the other hand, the second-order wave force acting on the 
body tends to a finite limit equal to the mean drift force, as the difference-frequency 
tends to zero. Thus, in the absence of more significant damping effects, resonant 



242 J. N .  Newman 

second-order motions would occur with velocity proportional to O( cr-') and 
amplitude proportional to O(c-'). 

An obvious alternative source of damping is viscous drag. However, the quasi- 
steady drag force is proportional to the square of the relative velocity between the 
body and surrounding fluid. From an equivalent-damping synthesis (cf. Faltinsen 
1991) the resultant damping coefficient is formally of order c. 

The relevance of ' wave-drift damping ' was suggested in an experimental study by 
Wichers & van Sluijs (1979), where the oscillatory surge motions were measured on 
two ship models restrained by spring moorings. Comparisons of the extinction rate 
in calm water and in waves of differing heights clearly indicated the presence of a 
damping force proportional to the square of the wave height. (See also Faltinsen 
1991, figure 5.20, and Chakrabarti & Cotter 1992, figure 11.)  

These experimental observations have been explained in a quasi-steady manner, 
by considering the added resistance in waves due to steady translation of the body 
with small velocity U. This force is proportional to the square of the incident-wave 
amplitude, tending to the zero-speed mean drift farce as U+O, with the leading- 
order correction proportional to U. The derivative with respect to U,  evaluated at  
U = 0, represents a force proportional to the velocity, which is interpreted as a 
damping coefficient. 

This quasi-steady explanation has been used as the basis for several theoretical 
and computational studies where the diffraction problem is solved for a body moving 
with a steady forward velocity U ,  in the presence of incident waves. The derivative 
of the resulting mean force with respect to U is derived analytically, using pertinent 
asymptotic analysis for U 4 1 (Nossen, Grue & Palm 1991 ; Emmerhoff & Sclavounos 
1992). Alternatively, in the approach followed by Zhao & Faltinsen (1989), the 
damping coefficient is evaluated by numerical differentiation from computations 
with small non-zero velocity. 

In  the present paper the phenomenon of wave-drift damping is considered in a 
more direct manner, without introducing a steady forward velocity. Our approach is 
motivated by the conditions of the experimental observations. Whereas the damping 
due to wave radiation is asymptotically small with respect to the frequency of body 
oscillations in calm water, a more significant damping force occurs in the presence of 
an incident wave field. This suggests the use of perturbation methods to analyse the 
higher-order interaction between low-frequency body motions with frequency cr, and 
the diffraction problem for the fixed body in incident waves of frequency o. The 
analysis is simplified by assuming that c -4 o. In  this respect the formulation is 
similar to that of Agnon & Mei (1985), who employ the method of multiple scales to 
analyse the corresponding two-dimensional problem for a rectangular body in 
shallow water. 

One feature of the present approach is that, like the conventional linear analysis 
of floating-body motions, it  is possible to consider not only the force due to 
longitudinal surge motions, but also the more general case of arbitrary motions with 
multiple degrees of freedom. In  practice the most important modes are translations 
in the horizontal plane (surge and sway), and rotation about the vertical axis (yaw). 
Our principal objective is to evaluate the three-by-three matrix, of the components 
of the wave-drift damping horizontal force and vertical moment, due to low- 
frequency oscillatory motions in the corresponding modes. 

The perturbation expansion for the velocity potential is postulated in $2, and 
appropriate boundary conditions are derived. In  $ 3 the low-frequency approximation 
is introduced to simplify the free-surface boundary conditions for the required 
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higher-order potentials. In $4 the hydrodynamic force acting on the body is 
expressed in an analogous perturbation expansion, and the wave-drift damping 
coefficient is derived from pressure integration as the component of the force in phase 
with the body's velocity which is proportional to the square of the incident wave 
amplitude. Integral relations are used in $5 to replace local integration over the body 
and free surface by integrals over a control surface in the far field. Comparisons are 
made with the results of the quasi-steady analyses by Emmerhoff & Sclavounos 
(1992) and by Grue & Palm (1993). In $6 the present results are discussed from the 
standpoints of physical interpretation and computational implementation. Various 
integral relations used in the analysis are derived in the Appendix. 

2. Expansion of the velocity potential and boundary conditions 
Consider the diffraction problem, resulting from the interaction of monochromatic 

incident waves with frequency w and amplitude IAI, and also the radiation problem 
resulting from oscillatory body motions <(t)  in the horizontal plane with frequency 
v. Three separate modes of motion are included : surge (parallel to the x-axis), sway 
(parallel to the y-axis), and yaw (rotation about the vertical z-axis). An indicia1 
notation ( j  = I ,  2,6) is used to denote each of these three modes of motion, 
respectively, with the corresponding oscillatory displacement Cj sin (d )  and velocity 
(rCicos(at). Since the wave-drift damping force and moment are linear in these 
displacements, it  is sufficient to consider a single degree of motion without regard for 
nonlinear interactions between different modes. The phase of the incident wave is not 
restricted, hence there is no loss of generality in defining the body motions to be in 
phase with sin (d) ; similarly, when a complex representation is adopted for the 
oscillatory time dependence, it will be assumed that Ej is a real coefficient. Later it 
will be assumed that the frequency of the body motions is much less than that of the 
incident waves, i.e. (T 4 w.  

The fluid is considered to be infinitely deep, and the flow is assumed to be 
irrotational. For the above inputs the appropriate perturbation expansion for the 
velocity potential can be expressed in the form 

Here the potentials $, and $mi depend on the space coordinates x. The first subscript 
refers to the order of magnitude in A ,  and the second subscript refers to the mode of 
motion. Thus q5m = O(Am) are the components of the diffraction solution, and q5mj are 
potentials of the same order in A ,  due to the body motions. Superscripts are used 
when necessary to denote harmonic time dependence in the respective frequencies. 
The symbol Re denotes the real part of the complex expression. Without loss of 
generality the potential q5io), the component of the second-order diffraction solution 
whioh is independent of time, is assumed to be real. The remaining potentials 
displayed on the right-hand side of (2.1) are complex. Terms which are conjugate to 
those in (2.1) can be neglected, hence it is permissible to include only the complex 
exponentials which have a positive imaginary argument when w 

The functions q5j and c$,,,~ in (2.1) are governed by Laplace's equation in the fluid 
domain, with appropriate boundary conditions specified on the body and free 

> 0. 
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surface. The boundary conditions are completed by requiring each potential to 
vanish at large depths below the free surface. Except for the incident-wave potential 

#I = ( g ~ / o )  eKz-iK(xcosp+vsina) 

which is a specified component of the first-order diffraction solution $,, each 
potential in (2.1) must satisfy the radiation condition of outgoing waves in the far 
field. Tn ( 2 . 2 )  g is the gravitational acceleration, K = w 2 / g  is the wavenumber, and /3 
denotes the angle of incidence relative to the positive x-axis. Since the phase is 
unrestricted, the amplitude A is complex. 

3 (2-2) 

The first-order diffraction potential dl is subject to the boundary conditions 

$198 = o  on#,, (2.3) 

and g$,, - = 0 on x = 0. (2.4) 

Here S ,  is the submerged portion of the body surface, in its mean position. The 
subscript n denotes the normal derivative, with the unit normal vector n defined in 
the positive sense to point out of the fluid domain, and hence into the interior of the 
body. Subscripts (z, y, z ,  t )  denote partial differentiation with respect to the 
corresponding variables. 

The first-order radiation potential #oj satisfies the boundary condition 

$ O j n  = fq on x,, ( 2 . 5 )  

n, = n,, n2 = nu, n6 = xny- yn,. (2.6) 

g#oj2-cr2$oj = 0 on z = 0. (2-7) 

where the three components of the vector (nj> are defined by 

The appropriate free-surface boundary condition is 

The higher-order potentials in (2.1) satisfy inhomogeneous boundary conditions on 
the body and/or the free surface. In the analysis to follow it will be necessary to 
consider various products of the time-dependent potential (2.1) and its derivatives. 
These products can be expressed in a similar form, with appropriate coefficients. 
Thus, if two functions A(t)  and B(t) are represented as in (2.1) with corresponding 
coefficients ama and b,,, the product C = AB can be represented in the same form. 
The relevant low-frequency components of C are as follows : 

cp) = t Re {a, b f } ,  

c$) = &(a1 b, + aoj b l ) ,  

c(-) 1j = 1 2(a1 b,*, + a; b,) 9 

c(0) 2i = a p o j  + aoj b p  + +(apl l*  + a: 6s’ + a y  * b, + a, b$T’*). 

(2 .8)  

(2.9) 
(2.10) 

(2.11) 

The coefficients of triple products can be derived by repeated application of the same 
relations. 

On the exact oscillatory position g,, of the body surface the kinematic boundary 
condition is 

yP,(x, t )  = &) - n. (2.12) 

Boundary conditions for the potentials in (2.1) on the mean body surface are derived 
by Taylor series expansion of the left-hand side of (2.12) to the mean position S,,, and 
accounting for the rotation of the body-fixed normal vector n. The appropriate 
modification of (2.12) follows from the analysis outlined by Newman (1978, equation 
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3.28). Neglecting terms of order 6' yields the following boundary conditions for the 
three separate modes of motion: 

@1n = [A t )  n, - @ l m  (2.13) 

@2n = [ A t )  n,-62(4 @2yn, (2.14) 

@6n = i 6 ( t )  ( x n g - y n z ) - h ( t )  (X@6yn-y@6zn)+'55(t)  (nx@6g-ng@6z) On #?J. (2.15) 
The last pair of terms in (2.15) accounts for the rotation of the coordinate system. 
The other terms in (2.13)-(2.15) are the results of Taylor expansion between the 
oscillatory and mean body surfaces. 

The boundary conditions (2.13)-(2.15) can be expressed on the unified form 

@jn = &) nj-t j ( t )  q n ( @ j )  on S b ?  (2.16) 

where %($) = $z) %(#I = $g> %($I = x$g-Y$x* (2.17) 

Since V2$ = 0, each of the three functions defined by (2.17) is harmonic. Normal 
derivatives of the same functions are denoted by 

%%($) = $%n) % n ( $ )  = $Vn> 966,($) = X$l /n-Y$zn+nz$y-ny$x .  (2.18) 
When applied to the potential for steady-state translation of the body, the normal 
derivatives (2.18) are equivalent to the so-called 'm-terms' which appear in the 
quasi-steady analyses (Nossen et al. 1991 ; Emmerhoff & Sclavounos 1992). In the 
present work the operators (2.17) are applied in a different manner, to the diffraction 
solution with the body fixed. 

Collecting the terms of the same order in (2.16) and using (2.8)-(2.11)) the following 
boundary conditions are derived on the mean position of the body: 

$g = 0, (2.19) 

$$: = &iiqn($l), (2.20) 

$.$; = Bjn(#F). (2.21) 

Next we consider the free-surface condition, which is expressed in exact form as 

(2.22) 

where V = V@ is the fluid velocity vector. This boundary condition is transferred to 
the mean free surface x = 0 using the following expansion for 5:  

1 1 

g 9 

a 
at 

Qtt+g@, = - - V 2 - g V . V ( V 2 )  on z = 5, 

5 = --(~j,+gv2),=, = - - ( ~ r , + ~ l r 2 + g ~ , , ) , _ , + o ( ~ 3 )  

Using (2.23) in the Taylor-series expansion of (2.22) about z = 0, 

1 

9 
@tt+g@, = -@t(@ttz+g@,,)-22- K 

(2.23) 

2 

g 
+ - @ , ( V , .  K +  V .  K,)-&V.V(V2)+O(CD4) on z = 0. (2.24) 
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For the same potentials associated with (2.19)-(2.21) the corresponding free- 

g$F2 =.fi0), (2.25) 

gqq&)-(w*a)z$$;) =fit', (2.26) 

g$$!-CTz$$) = f i ! )  on z = 0. (2.27) 

surface boundary conditions can be written in the forms 

The inhomogeneous function on the right-hand side of (2.25) is 

(2.28) 

Here (2.4) has been used to eliminate the imaginary contribution from the first 
derivative. The right-hand side of (2.26) can be evaluated in the form 

I a fi0) = Re { 8 ( - w2$T + g$Tz) = Re {io#, $&,I. 

io  i a  
f$) = -$I( - ~ 2 $ o j z  +S$Oj2,)* f- ($Oj)* ( - W2$lZ +g$,,,) -i(o * a) v(b,*v($oj)'. 

29 2g 
(2.29) 

Here the superscript ( f ) following a function in parentheses denotes the function or 
its complex conjugate, respectively. The corresponding result for the right-hand side 
of (2.27) will be derived in $3, under the approximation of small CT. 

The boundary condition (2.25) implies that $!jo) is non-wavelike. In  deep water, the 
right-hand side of (2.28) is o(l/R), for large horizontal radius R, since the terms in 
parentheses vanish for plane waves. A more careful analysis in the Appendix shows 
that $!j") = O(R-'). 

3. Low-frequency analysis 
It is appropriate to consider the asymptotic forms of the potentials for c/ < o and 

8 1  < g, where 1 is the characteristic lengthscale of the body and w21/g = O(1) is 
implied. In the limit a = 0, (2.7) reduces to the rigid-free-surface condition. In  view 
of the boundary condition (2.5) the potential is re-scaled in the form 

$oi Vj? (3.1) 

where the canonical potentials qj are real and satisfy the boundary conditions 

These are the velocity potentials for translation or rotation of the body, with unit 
velocity, in the presence of the 'rigid' free surface. For small values of a21/g, (3.1) 
applies throughout an inner domain which is large compared to 1 and the wavelength 
2xg/02 of the diffraction problem, but small compared to the wavelength 27cg/a2 of 
the low-frequency oscillations. Hereafter our attention will be restricted to this inner 
region. From the free-surface condition (2.7) it follows that the imaginary part of $oi 

is of order 8. 
Next we consider (2.26) and the associated functions (2.29), which define the free- 

surface boundary conditions for the potentials $if). I n  the low-frequency analysis it 
is convenient to define the auxiliary potentials 

$y - qq;) = ps, 
$$) + $$;) = aQj. 

(3.4) 

(3-5) 
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From (2.20), the corresponding boundary conditions on the mean position 8, of the 
body surface are 

4 n  = iqn(A)r (3.6) 

Qjn = 0. (3.7) 

(3.8) 

(3.9) 

Similarly, using (2.26) and (2.29) on x = 0, and neglecting terms of order ( r2,  

94, - oaq = 0, 

gQi, - 02Qi = 204 -k iqb1 vizz - 2iwVq4 - Vq,. 
Since the boundary conditions (2.20) and (3.6) do not involve cr, it follows that the 
functions Q, and 4 defined by (3.4) and (3.5) also are independent of (r. The error in 
neglecting (r is a factor 1 +O(a2). 

A potential which satisfies the boundary conditions (3.6) and (3.8) is easily 
constructed in the form = igj(&), but this violates the radiation condition since 
the incident wave is part of qbl. For j = 1,2  this problem can be overcome simply by 
adding an extra term proportional to 

Pl = ic$ls-KcosP$l, Pz = i&-KsinPqb,. (3.10) 

For j = 6 the appropriate extra term involves the derivative $la with respect to the 
wave heading angle p:  

p6 = i96($1)+i#1,8. (3.11) 

To confirm these solutions, note that each sum vanishes for the incident-wave 
potential (2.2), hence (3.10) and (3.11) satisfy the far-field radiation condition. In 
view of the boundary condition (2.3) there is no contribution from the second terms 
to the boundary condition (3.6), and thus the validity of (3.10)-(3.11) is established. 

In the analysis of Qi attention is first given to the term 2wP, on the right-hand side 
of the free-surface boundary condition (3.9). The general solution can be expressed 
in the form 

Qj = ( 2 w / g ) q K  + qj, (3.12) 

where the subscript K denotes differentiation with respect to the wavenumber. The 
potential qj is subject to the boundary conditions 

qjn = - ( 2 w / g ) 4 K n  On sb, (3.13) 

and (3.14) 

Since 4 is a solution of the homogeneous free-surface condition, its effect on the 
right-hand side of (3.9) is secular. For large values of the horizontal radius R the 
radiation condition implies that R-i emiKR , and thus the solution (3.12) is non- 
uniform in the far field, with the asymptotic behaviour Qj - Rie-iKR. This does not 
result in practical difficulties in the analysis to follow, provided the domain 
considered is suitably restricted. 

Since vj is asymptotic to a Rankine dipole, the right-hand side of (3.14) is of order 
l/R3 in the far field. The solution of this boundary condition is non-trivial, but 
uniform at infinity with the same far-field form as a first-order radiating wave. 
Thus the conventional far-field radiation condition is applicable for the regular 
component q, . 

Next we consider the functionf$’) defined by (2.27). The possible contributions are 
indicated from the complete third-order free-surface condition (2.24), and involve the 
following combinations of lower-order potentials and their drivatives : 

with the results 

gqiz - 02qi = ioqbl vjZz - 2io Vg51 - Vpli on z = 0. 

(h4lj)3 ($23 4 0 , h  (@> $oj). 
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Only the first combination is independent of $oj, and hence of order one as g + O .  
After substituting the potentials and $if) with appropriate time-dependent 
factors in the terms on the first line of the right side of (2.24), and collecting all 
components with the time dependence eiut, the limit for f $ )  as g+ 0 is obtained in the 
form 

A;’ - &4mw;i -4:L) - @(WZ - $3 
- $1 (m72 * - $!$? 1 + 4;) * @$ 12 - 9 122 )I - ~ i 0 [ - 9 ~ ~ e Z + ~ ~ T , , - $ 1 p j * Z e + p , *  $ l * Z I .  (3.15) 

In the far field the second derivatives in (3.15) can be replaced byK2,  and it follows 
that f$’) = o(l/R). Thus in the limit as a+O the boundary condition (2.27) implies 
that $1;) is non-wavelike, vanishing algebraically in the far field in the same manner 
as 

The solutions (3.10) can be substituted in (3.15) for j = 1 ,2  with the result 

m - WWT $ 1 2 2 -  $ 1  $3 = iq(j+4°)). 

Thus, in the limit c-t 0, the potentials 

(3.16) 

$2) = iq($?)) (3.17) 

are solutions of the boundary conditions (2.21) and (2.27) for ( j  = 1,2). Similarly, for 
j = 6, 

j+$) - ig6(f2(0)) +if$), (3.18) 

and $1:) = ig8(@jO)) (3.19) 

4. The hydrodynamic pressure force and damping coefficients 
Perturbation expansions similar to (2.1) can be assumed for the pressure and the 

resulting force (and moment) acting on the body. The appropriate terms to consider 
for the component of the force or moment in the same direction as the mode ti, due 
to the diffraction field, the oscillatory motion in the mode ti, and their interaction, 
are 

F,(t)  = Re {Fli eiwt + F$) +Fii) e2iwt + . . . 
+ tj[F,,, eid +FiG) ei(w+d t +F(-) e i ( w - d t  

+ ~ i ; j  eiut + ~ ( 2 + )  e i ( z w + d  t +F~;C&) e U Z w - d  t + 
1Zi 

. . .I}. (4.1) z i j  

Here F16 is the first-order exciting force and B’$) is the second-order mean drift force 
for the fixed body. Foij is the first-order force due to a unit motion &, which can be 
expressed in the usual form 

(4.2) F,,, = - (irr2AoZi + rrBoij), 

where the real coefficients A,, and B,, are the added-mass and damping coefficients. 
The higher-order force component F$; can be expressed in the analogous form 

= - (ia2A 2i j  + CT&,). (4.3) 

This force is of second order in the wave amplitude, and first order in the motion 
amplitude. 
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For asymptotically small values of the frequency c, A,, = O(l) ,  whereas B,, = 
O(a7) as noted in the Introduction. By comparison, the highest-order added-mass 
coefficient A zii is of secondary importance, but the corresponding damping coefficient 
Bzij is significant since B,, is asymptotically small. 

The most direct approach to evaluate Fi:] is from pressure integration on the body. 
The analysis is carried out for a floatin3 body with a time-varying wetted surface fl,,, 
mean surface S,, waterline contour C,,, and mean waterline contour C,, with the 
restriction that the body surface is smooth and vertical at the waterline. Integration 
around the closed contour Cb is defined in the positive sense with respect to the 
enclosed boundary surface X,, i.e. in the counter-clockwise direction when viewed 
from above the origin. For a submerged body the integrals over the waterline can be 
neglected. Ultimately a fixed control surface S, also will be used, which surrounds the 
body in the far field. The portion of the mean free surface between S, and S, will be 
denoted S,. The intersection of S, and S, is the contour C,. 

The horizontal components of the pressure force and the vertical component of the 
moment are evaluated using Bernoulli’s equation, in the form 

As in the case of the body boundary condition (2.13), the pressure is transferred from 
flb to its mean position S,. In  addition, the contribution from the time-varying 
intersection of fib with the free surface z = 5 is expanded as a line integral on cb. 

The contribution from the transfer of the pressure involves the expansion 

PI& = PIS, +E$) q ( P )  + O ( E 3  

The linear correction does not affect the damping coefficients in (4.2) or (4.3) since it 
is out of phase with the body velocity, and the hydrostatic pressure does not 
contribute to (4.4). Thus the only contribution from integration over the mean 
surface is 

-P /JSb (A + tv4 * V4) n, ds. (4.5) 

The contribution from the contour C,, includes the vertically integrated hydrostatic 
pressure contribution -ipgc, and the Taylor expansion of the dynamic pressure. 
The resulting line integral is 

The last term in the first integral accounts for the integrated hydrostatic pressure ; 
in the second integral (2.23) is used. Terms of higher order than (4.3) are neglected. 
The last term in (4.6), which contributes terms of order a& = O(a2) to (4.3), is 
neglected hereafter. 

Our objective is to evaluate Bzij ,  the wave-drift damping coefficient in the direction 
i due t,o a velocity in modej. It is convenient to simplify the notation by defining the 
new coefficients 

gij = B,,Jp. (4.7) 

9 FLM 249 
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Considering only the real part of the force coefficient F$), and substituting the 
appropriate components of the velocity potential (2.1) in (4.5)-(4.6), 

A$ = Rell , , ,  ( i $ ~ ~ ) + V ~ ~ o ) . V p l j + g V $ T . V g i ) , , d s  

Hereafter the symbol Re is deleted, with the understanding that the real part is 
implied in all of the following equations. 

Equation (4.8) provides an explicit relation for the wave-drift damping coefficients. 
The principal difficulty is in evaluating the various higher-order potentials including 
P,, Qj, $!jo), and $$). The dependence on the last two can be removed by further 
analysis, using Green’s and Stokes’ theorems together with appropriate boundary 
conditions on the body and free surface. After substituting the boundary condition 
(3.2) in the first term of the surface integral, and Stokes’ theorem in the form (A 2) 
for the second and third terms, 

% = I,, ( i ~ D ) ~ * n + ~ ~ ~ , ( ~ ~ O ) ) + ~ ~ ~ ~ n ( ~ ~ ) ) *  

+s kb 

SSJSb(i~D’~~,+~~$.(BP’))dS 

[qjfi(o) -$qbr(q- iV$l*Vq+.)] n, dl. (4.9) 

To evaluate the contribution from the first term in the surface integral of (4.9), 
Green’s theorem is applied using the boundary conditions (2.21), (2.27), and (3.3),  
with the result 

1 

where the integral which remains over S,, is defined as 

(4.11) 

Various alternative formulae for evaluating (4.11) are given in the Appendix. The 
only non-zero elements are I,,, 12,, I,,, and 

The contribution from the last integral of (4.10) is 

where (A 4) and (2.28) have been used. 
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Substituting these results in (4.9), 

The integrand in the last integral vanishes for j = 1,2, as a result of (3.16). For 
j = 6, it follows from (3.18) that 

where (2.28) and (A 3) have been used. 
Comparing (4.13) and (4.14) with the original expression (4.8), integrals over the 

free surface are introduced but the higher-order potentials $$) have been removed 
and the second-order diffraction potential $io) only contributes via the dipole 
moments pi in the evaluation of I, from (A 16). The latter contribution is present 
only for the coefficients q6, %6, Be1, and &?682, The special role of $lo) has been 
emphasized by Grue & Palm (1992, 1993) with respect to the coefficients B16, BZ6. 

5. Far-field analysis 
Momentum relations have been used in the quasi-steady analyses by Grue & Palm 

(1992, 1993) and Emmerhoff & Sclavounos (1992), to relate the wave-drift damping 
coefficients to integrals over a control surface 8, in the far field. Similarly, in the 
present analysis of unsteady body motions, energy conservation could be used to 
relate the work done by the damping coefficients to the rate of energy flux in the far 
field. However, higher-order potentials and higher-order terms in the low-frequency 
approximation must be considered in both the momentum and energy approaches. 
Alternatively, integral theorems can be applied to the results of 94 with the objective 
of replacing integrals in the near field, over the body and free surface, by integrals 
over S,. This analysis is carried out below. 

From the boundary condition (3.7) and Green’s theorem, the integral over Sb in 
(4.13) can be expressed as 

Invoking the inhomogeneous condition (3.9) for Q,, the contribution from S, is 

9-2 
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The last term in (5.2) can be transformed using (A 3). With the substitutions $ = 
$19i($:) and y? = qj, and the boundary condition qjz = 0 imposed, (5.2) is equal to 

In the contour integral (3.2) has been used, and there is no contribution from C, since 
cpj is o(l/R) in the far field. After substituting (5.1) and (5.3) in (4.13), 

Here in the first integral over S,  (A 3) has been used, together with the boundary 
conditions (2.3) and (3.3). 

After using Stokes' theorem in the form (A4) to transform the two contour 
integrals over G,, 

(5.5) 

The first integral over S, vanishes for j  = 1,2,  as noted following (4.13). Similarly, 
after using (3.10) to evaluate Pj, the second integral over S, vanishes for i = 1 ,2 .  For 
i = 6 the contribution from the second integral cancels I,, except for the last two 
terms in (A 16). For j = 6 the first integral over S, must be evaluated using (4.14), 
and (3.11) may be used to evaluate p3. The final result for all cases except i = j = 6 
can be expressed in the form 
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Here Sij is the Kroenecker delta function, equal to one if i = j and zero otherwise, and 
p l ,  p2 are the horizontal components of the effective dipole moment associated with 
the potential &f') as defined by (A 13). Except for this dipole moment, (5.6) depends 
only on the first-order diffraction potential and on the interactions (3.4)-(3.5) 
between $1 and qj. The same dependence was noted a t  the end of 54, with respect to 
the near-field analysis. 

Finally, in the case i = j  = 6, 

Note that in (5.6) the only integrals which remain are in the far field, but in (5.7 
an integral remains over the free surface. 

If i = j  =I= 6, (5.6) reduces to the form 

After applying Stokes' theorem over S,, in a form analogous to (A 2), 

where (2.4) is used. Except for differences of notation this formula is identical to 
equation (72) of Emmerhoff & Sclavounos (1992). 

Another variant of the far-field representation is derived by using the function pi 
in place of gi(q5f) in (5.1). For i = j  this leads to the relatively simple result 

r r  

(5.10) 

which is valid for all three values of i .  A feature of (5.10) is that the contribution from 
the secular component of (3.12) can be evaluated by differentiation of a non-singular 
integral : 

In  this form explicit dependence on the derivatives I<K and PiKn is removed, but the 
latter derivative still must be evaluated on the body surface in the boundary 
condition (3.13). Since the functions which remain in the integrand of (5.11) satisfy 
the radiation condition, far-field asymptotic approximations can be substituted for 
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each potential in the same manner as in the evaluation of the mean drift force (cf. 
Newman 1967). 

Collectively, (5.6) and (5.10) can be used to evaluate all of the damping coefficients 
.@$* from far-field integrations. However the apparent computational advantage of 
these relations over (4.13) is offset by the fact that, regardless of which approach is 
followed, the higher-order potentials qj must be evaluated on the body surface. 

6. Discussion 
The approach followed in the present work is to consider the low-frequency motion 

of a floating body as a perturbation of the incident-wave diffraction problem where 
the body is fixed in position. Two timescales are involved, one associated with the 
body motions at the frequency (T and the other corresponding to the incident wave 
frequency o. The analysis is based on the assumptions that the incident-wave 
amplitude A and body motions E are both small, and that (T < o. Unlike other works 
which use a quasi-steady analysis, the relevant damping force acting on the body is 
derived without introducing a vanishingly small forward velocity of the body and 
considering the derivative of the force with respect to this velocity. 

The results confirm that, whereas low-frequency oscillations in calm water result 
in wave radiation and damping asymptotically small with respect to the frequency 
(r, the same quantities are of order one in IT if the oscillations are superposed upon 
an incident-wave field. More specifically, for horizontal low-frequency oscillations of 
the body, the matrix of calm-water damping coefficients B,, = O((T'), whereas the 
analogous wave-drift coefficient B,, = O(A2). Thus the relative importance of these 
two damping coefficients is in proportion to the ratio d / A 2 .  The small value of the 
calm-water damping coefficient can be associated with the fact that the far-field 
energy flux is associated with long waves, the amplitude of which is negligible due to 
their asymptotically large lengthscale relative to the body. The situation is different 
in the presence of the diffraction field, where the basic wavelength is comparable to 
the body scale and the interaction of these waves with the body motions leads to a 
modification of the energy flux associated with the scattered field. 

It is interesting to compare the present analysis with that of the quasi-steady 
approach, e.g. the work of Emmerhoff & Sclavounos (1992). The linear potentials 
and q50j are the same, but the interaction potential & is somewhat different. In the 
quasi-steady analysis the difference component (3.4) does not appear, and the 
interaction potential is formally equivalent to (3.5). Although the potential is 
absent, an equivalent term is included in the inhomogeneous free-surface condition 
(3.9) to account for the effect of steady forward velocity on the frequency of 
encounter. As shown in $5 the final results for the wave-drift damping coefficients gI1 
and .@,, are equivalent in these different approaches. 

The quasi-steady analysis of Nossen et al. (1991) is somewhat different. Instead of 
the first inhomogeneous term on the right-hand side of (3.9), the secular component 
of the interaction potential appears as a consequence of differentiating the zero-speed 
Green function to obtain a linearized correction for forward velocity. This 
construction was first suggested by Huijsmans & Hermans (1985). It has been 
extended by Grue & Palm (1992, 1993) to include the coefficients BZl and gel, with 
similarities to the present results for these coefficients. 

A significant feature of the present method is the ability to include angular (yaw) 
oscillations of the body, about the vertical axis. This mode of motion cannot be 
accounted for in the quasi-steady approach, except possibly by considering a slow 
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steady rotation of the body. Unlike the conventional added-mass and damping 
coefficients in (4.2), the matrix of wave-drift damping coefficients 9jgi derived here 
appears to be asymmetric, and there is no obvious way of relating the forces due to 
yaw motions to the corresponding moments due to surge or sway. 

Our results for yaw ((4.14) and (5.6)-(5.7)) involve differentiation of the first-order 
diffraction solution with respect to the angle of incidence p;  this can be interpreted 
in the quasi-steady sense as the correction of the incidence angle due to the body’s 
yaw oscillations. Equation (5.7), for the yaw damping moment, includes an integral 
over the free surface, but the same coefficient is expressed completely in terms of a 
far-field integration in the forms (5.10)-(5.11). The latter formulae do not involve 
explicit differentiation with respect to the heading angle, but this is implicit via the 
functional PB defined by (3.11). 

In the present work it is assumed that the unsteady motions <(t) are sufficiently 
small to justify perturbation expansions about the stationary mean position of the 
body. This assumption is not made explicitly in the quasi-steady analyses, which 
assume only that the corresponding velocities &t) are small. At first glance this 
distinction appears to be significant, since low-frequency horizontal excursions of 
offshore platforms generally occur with substantial amplitudes. However, in the 
context of deriving only the wave-drift damping coefficients, i.e. the component of 
the total hydrodynamic force which is linear in ( ( t ) ,  the magnitude of <(t) is 
irrelevant. Thus, despite the different initial assumptions concerning the order of <(t ) ,  
our results (5.8)-(5.9) are identical to those of Emmerhoff & Sclavounos (1992). 

Far-field integration is generally considered to be simpler or more accurate than 
direct pressure integration on the body or intermediate results such as (4.13). 
Asymptotic relations can be used to evaluate the components of the velocity 
potential, and integrals over the control surface 8, can be reduced to azimuthal 
integrals in terms of the far-field scattering amplitude. A more specific advantage of 
the far-field evaluations here is that the secular component of the higher order 
potential Qi can be evaluated as the derivative of an integral with respect to the 
wavenumber, as in (5.11). On the other hand, the most difficult task envisaged in 
numerical implementation is the evaluation of the potential qi, as the solution of the 
boundary conditions (3.13)-(3.14). Even in the far-field analysis this solution is 
required locally on the body, in order to evaluate the far-field scattering amplitude. 
Thus there is no obvious advantage in evaluating the wave-drift damping coefficients 
in the far field, and direct use of (4.13) may in fact be simpler. Numerical 
implementation of the present analysis is required to confirm this conjecture, and to 
demonstrate the practical value of our results. 

Several restrictions should be recognized in the present analysis. These include the 
assumptions of infinite fluid depth, no first-order body motions, and the consideration 
of low-frequency motions only in the horizontal plane (modes j = 1,2,6) .  The effects 
of finite depth are relatively simple to account for, including the second-order 
component of the incident-wave potential required in the diffraction solution. First- 
order body motions can be accommodated by including the corresponding linear 
radiation potentials in but the boundary condition (2.3) must be modified and 
this will affect much of the subsequent analysis. Low-frequency vertical motions of 
the body may be important in certain applications; the principal difficulty 
anticipated in this extension of the analysis is that the corresponding components of 
the operator (2.17), including vertical derivatives, will complicate the reduction of 
the integrals over the free surface. Each of these possible extensions will be useful in 
practical applications. 
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Appendix 

form 
A variant of Stokes’ theorem (Milne Thomson 1955, $2.51) can be applied in the 

Here S is an open surface, C the boundary contour, and the integration around C is 
in the positive (counterclockwise) direction with respect to the normal vector n. 

For application to the second and third terms in the surface integral of (4.8) the 
substitution q = q5V$ is made, with (A 1)  applied on the body surface 8, and the 
contour C, in the plane x = 0. The x,y-components of (A 1) are then given 
respectively by setting i = 1,2 in the equation 

JJSb(Vq5.ogrnid8 = ~ ~ s b [ % ( d ) r “ , + d ~ , ( $ ) l ~ + ~  ‘b d$*n,dl. 

sS , , (Vd.V$)ds  = {~sf(e,r”,+d$zz)d8+f cb+cc 611.ndl. 

(A 2) 

Here it is assumed that V2$ = 0. To verify that (A 2) also holds in the case i = 6, the 
products y# and xq5 are substituted for q5 with i = 1,2 ,  respectively; the difference 
between these two results is equivalent to setting i = 6 in (A 2). 

Alternatively, consider the vertical component of (A 1 )  on the free surface, 

(A 3) 

In the contour integral the normal derivative is directed out of 8, in the same plane. 
This integral is to be evaluated over both contours Cb and C, in the positive direction 
(counterclockwise when viewed from above). 

In the special cases where $ = xi, (A 3) is reduced to the more familiar form of 
Stokes’ theorem, 

This formula also can be extended to include the case i = 6, using the same procedure 
described following (A 2). 

Next we consider the integrals It j  as defined by (4.11). From the boundary 
conditions (3 .2) ,  

I ,  = JT,, (nj %(@)) -ni %($go))) ds. (A 5) 

The integralsI,,, IZ2 ,  andI,, are obviously equal to zero. For I,, the integrand in (A 5 )  
is equal to the vertical component of n x V#, and the integral vanishes by another 
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variant of Stokes’ theorem (Milne Thomson 1955, $2.51, equation 2). Thus I,, = 
-Il2 = 0. The only non-zero cases are 

Here Stokes’ and Green’s theorems have been used, together with the boundary 
conditions (3.2) and (3.3). After reversing the signs for the lower elements of (A 6) 
and using (A 3) with the boundary conditions (2.3), (2.25) and (2.28), 

An alternative representation can be derived by applying Green’s theorem to 4:’) 
and (rpi-xi), for i = 1,2. Since both potentials satisfy homogeneous Neumann 
conditions on the body, 

JJsf $i:)(vi - xi) + JISc ($PA (Ti - xi) - #io)(vtn - ni)) a = 0. (A 8) 

The asymptotic form of $?) is required to ascertain the contribution from the last 
integral in (A 8). For this purpose it is convenient to assume that S,  is a circular 
cylinder of large radius R about the vertical axis. If the divergence theorem is used 
with the boundary conditions (2.19) and (2.25), 

where (A 3) is used to derive the last contour integral. To estimate this contour 
integral Green’s theorem is applied to and its conjugate. Since the boundary 
conditions on the body and free surface are homogeneous, 

In the far field the asymptotic form of is such that, for large R, 

$,(I?, 8, x )  = 8,O) eKZ+ O(R-’). (A 11) 

Here the estimate of the error follows from the spherical-harmonic ‘ wave-free ’ 
potentials (Havelock 1955, equation 8), and from the far-field asymptotic expansion 
of the corresponding Green function (Newman 1985, equation 6). With (A 11) 
substituted in (A lo), the vertical integration over S, can be performed, with the 
resulting estimate 

Reifcc$l$~ndZ = O ( E 2 ) .  (A 12) 
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Thus (A 9) is of order (F), implying that $$') behaves like a Rankine dipole in the 
far field, with the asymptotic approximation 

p - p * V ( l / r ) .  (A 13) 

Here p is the dipole and r = (R2 + 2);. The only non-vanishing contribution to the 
integral in (A 8) over S,, as the radius of the control surface is increased to infinity, 
is 

r r  

(&%, - $5:: q) dx = - 2npi JJ,, 
Evaluating the last integral in (A 8 )  and using (A 3), 

Substituting (A 15) in (A 7) gives the alternative expressions 
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